Top Mathematics discussions

NishMath

@medium.com //
The Post-Quantum Cryptography Coalition (PQCC) has recently published a comprehensive roadmap designed to assist organizations in transitioning from traditional cryptographic systems to quantum-resistant alternatives. This strategic initiative comes as quantum computing capabilities rapidly advance, posing a significant threat to existing data security measures. The roadmap emphasizes the importance of proactive planning to mitigate long-term risks associated with cryptographically relevant quantum computers. It is structured into four key implementation categories: Preparation, Baseline Understanding, Planning and Execution, and Monitoring and Evaluation.

The roadmap offers detailed steps for organizations to customize their adoption strategies, regardless of size or sector. Activities include inventorying cryptographic assets, assigning migration leads, prioritizing systems for upgrades, and aligning stakeholders across technical and operational domains. Furthermore, it underscores the urgency of Post-Quantum Cryptography (PQC) adoption, particularly for entities managing long-lived or sensitive data vulnerable to "harvest now, decrypt later" attacks. Guidance is also provided on vendor engagement, creating a cryptographic bill of materials (CBOM), and integrating cryptographic agility into procurement and system updates.

In related advancements, research is focusing on enhancing the efficiency of post-quantum cryptographic algorithms through hardware implementations. A new study proposes a Modular Tiled Toeplitz Matrix-Vector Polynomial Multiplication (MT-TMVP) method for lattice-based PQC algorithms, specifically designed for Field Programmable Gate Arrays (FPGAs). This innovative approach significantly reduces resource utilization and improves the Area-Delay Product (ADP) compared to existing polynomial multipliers. By leveraging Block RAM (BRAM), the architecture also offers enhanced robustness against timing-based Side-Channel Attacks (SCAs), making it a modular and scalable solution for varying polynomial degrees. This combined with hybrid cryptographic models is a practical guide to implementing post quantum cryptography using hybrid models for TLS, PKI, and identity infrastructure.

Share: bluesky twitterx--v2 facebook--v1 threads


References :
  • IACR News: MT-TMVP: Modular Tiled TMVP-based Polynomial Multiplication for Post-Quantum Cryptography on FPGAs
  • quantumcomputingreport.com: Post-Quantum Cryptography Coalition (PQCC) Publishes Comprehensive Roadmap for Post-Quantum Cryptography Migration
  • medium.com: In a major leap forward for global cybersecurity, Colt Technology Services, Honeywell, and Nokia have announced a joint effort to trial…
Classification: