@medium.com
//
References:
medium.com
, Peter Bendor-Samuel
,
Quantum computing is rapidly advancing, bringing both immense potential and significant cybersecurity risks. The UK’s National Cyber Security Centre (NCSC) and experts across the globe are warning of a "colossal" overhaul needed in digital defenses to prepare for the quantum era. The concern is that powerful quantum computers could render current encryption methods obsolete, breaking security protocols that protect financial transactions, medical records, military communications, and blockchain technology. This urgency is underscored by the threat of "harvest now, decrypt later" attacks, where sensitive data is collected and stored for future decryption once quantum computers become powerful enough.
Across the globe, governments and organizations are scrambling to prepare for a quantum future by adopting post-quantum cryptography (PQC). PQC involves creating new encryption algorithms resistant to attacks from both classical and quantum computers. The U.S. National Institute of Standards and Technology (NIST) has already released several algorithms believed to be secure from quantum hacking. The NCSC has issued guidance, setting clear timelines for the UK’s migration to PQC, advising organizations to complete the transition by 2035. Industry leaders are also urging the U.S. Congress to reauthorize and expand the National Quantum Initiative to support research, workforce development, and a resilient supply chain. Oxford Ionics is one of the companies leading the way in quantum computing development. Oxford has released a multi-phase roadmap focused on achieving scalability and fault tolerance in their trapped-ion quantum computing platform. Their strategy includes the 'Foundation' phase, which involves deploying QPUs with 16-64 qubits with 99.99% fidelity, already operational. The second phase introduces chips with 256+ qubits and error rates as low as 10-8 via quantum error correction (QEC). The goal is to scale to over 10,000 physical qubits per chip, supporting 700+ logical qubits with minimal infrastructure change. There are also multiple bills introduced in the U.S. Congress and the state of Texas to foster the advancement of quantum technology. Recommended read:
References :
Yvonne Smit@Qusoft
//
References:
Qusoft
Koen Groenland's book, "Introduction to Quantum Computing for Business," is gaining attention as a key resource for guiding companies on leveraging quantum advancements. As the Dutch quantum ecosystem expands, experts like Groenland are playing a vital role in making quantum knowledge accessible to the business world. The book aims to demystify this technology for business professionals without a technical background, focusing on the capabilities and applications of quantum computers rather than the underlying technical details. Groenland hopes the book will become a standard work for anyone starting a quantum journey, emphasizing the importance of understanding quantum algorithms for business value.
Classiq Technologies, in collaboration with Sumitomo Corporation and Mizuho-DL Financial Technology, achieved significant compression of quantum circuits for Monte Carlo simulations used in financial risk analysis. The study compared traditional and pseudo-random number-based quantum Monte Carlo methods, optimizing circuit depth and qubit usage using Classiq’s high-level quantum design platform, Qmod. The results showed efficient circuit compression is possible without compromising accuracy, supporting the feasibility of scalable, noise-tolerant quantum applications in financial risk management. The Open Source Initiative (OSI) and Apereo Foundation have jointly responded to the White House Office of Science & Technology Policy's (OSTP) request for information on an AI Action Plan. Their comment emphasizes the benefits of Open Source and positions the Open Source community as a valuable resource for policymakers. The OSI highlighted its history of stewarding the Open Source Definition and its recent work in co-developing the Open Source AI Definition (OSAID), recommending that the White House rely on the OSAID as a foundational piece of any future AI Action Plan. Recommended read:
References :
Matt Swayne@thequantuminsider.com
//
D-Wave Quantum Inc. has made a splash by claiming its Advantage2 annealing quantum computer achieved quantum supremacy in complex materials simulations, publishing their study in the journal Science. The company states that its system can perform simulations in minutes that would take the Frontier supercomputer nearly a million years and consume more than the world’s annual electricity consumption. According to D-Wave CEO Alan Baratz, this achievement validates quantum annealing's practical advantage and represents a major milestone in quantum computational supremacy and materials discovery.
However, D-Wave's claim has faced criticism, with researchers suggesting that classical algorithms can rival or even exceed quantum methods in these simulations. Some researchers say that they performed similar calculations on a normal laptop in just two hours. Concerns have been raised about the real-world applicability and practical benefits of D-Wave's quantum supremacy claims in computational tasks. Despite the criticisms, D-Wave is standing by the claims from the study. Recommended read:
References :
Cierra Choucair@thequantuminsider.com
//
NVIDIA is establishing the Accelerated Quantum Research Center (NVAQC) in Boston to integrate quantum hardware with AI supercomputers. The aim of the NVAQC is to enable accelerated quantum supercomputing, addressing quantum computing challenges such as qubit noise and error correction. Commercial and academic partners will work with NVIDIA, with collaborations involving industry leaders like Quantinuum, Quantum Machines, and QuEra, as well as researchers from Harvard's HQI and MIT's EQuS.
NVIDIA's GB200 NVL72 systems and the CUDA-Q platform will power research on quantum simulations, hybrid quantum algorithms, and AI-driven quantum applications. The center will support the broader quantum ecosystem, accelerating the transition from experimental to practical quantum computing. Despite the CEO's recent statement that practical quantum systems are likely still 20 years away, this investment shows confidence in the long-term potential of the technology. Recommended read:
References :
Dean Takahashi@AI News | VentureBeat
//
Recent breakthroughs are accelerating the progress in quantum computing. Researchers have experimentally recreated a fundamental theoretical model from quantum physics using nanographene molecules, paving the way for versatile research in quantum technologies. In another development, Irish startup Equal1 has unveiled the world's first silicon-based quantum computer, named Bell-1, which utilizes a hybrid quantum-classical silicon chip for accelerated quantum computing.
Meanwhile, Nvidia is constructing an accelerated quantum computing research center in Boston to integrate quantum hardware with AI supercomputers, aiming to tackle challenges like qubit noise and transform experimental processors into practical devices. Delft Circuits has also launched a turnkey High-Density Input/Output (HD I/O) system to address scalability bottlenecks in quantum computing connectivity. This system boasts 256 channels per module and modular expandability, offering a streamlined solution for connecting control electronics to Quantum Processing Units. Recommended read:
References :
|
Blogs
|