Yvonne Smit@Qusoft
//
References:
Qusoft
Koen Groenland's book, "Introduction to Quantum Computing for Business," is gaining attention as a key resource for guiding companies on leveraging quantum advancements. As the Dutch quantum ecosystem expands, experts like Groenland are playing a vital role in making quantum knowledge accessible to the business world. The book aims to demystify this technology for business professionals without a technical background, focusing on the capabilities and applications of quantum computers rather than the underlying technical details. Groenland hopes the book will become a standard work for anyone starting a quantum journey, emphasizing the importance of understanding quantum algorithms for business value.
Classiq Technologies, in collaboration with Sumitomo Corporation and Mizuho-DL Financial Technology, achieved significant compression of quantum circuits for Monte Carlo simulations used in financial risk analysis. The study compared traditional and pseudo-random number-based quantum Monte Carlo methods, optimizing circuit depth and qubit usage using Classiq’s high-level quantum design platform, Qmod. The results showed efficient circuit compression is possible without compromising accuracy, supporting the feasibility of scalable, noise-tolerant quantum applications in financial risk management. The Open Source Initiative (OSI) and Apereo Foundation have jointly responded to the White House Office of Science & Technology Policy's (OSTP) request for information on an AI Action Plan. Their comment emphasizes the benefits of Open Source and positions the Open Source community as a valuable resource for policymakers. The OSI highlighted its history of stewarding the Open Source Definition and its recent work in co-developing the Open Source AI Definition (OSAID), recommending that the White House rely on the OSAID as a foundational piece of any future AI Action Plan. Recommended read:
References :
Matt Swayne@The Quantum Insider
//
D-Wave Quantum Inc. has made a splash by claiming its Advantage2 annealing quantum computer achieved quantum supremacy in complex materials simulations, publishing their study in the journal Science. The company states that its system can perform simulations in minutes that would take the Frontier supercomputer nearly a million years and consume more than the world’s annual electricity consumption. According to D-Wave CEO Alan Baratz, this achievement validates quantum annealing's practical advantage and represents a major milestone in quantum computational supremacy and materials discovery.
However, D-Wave's claim has faced criticism, with researchers suggesting that classical algorithms can rival or even exceed quantum methods in these simulations. Some researchers say that they performed similar calculations on a normal laptop in just two hours. Concerns have been raised about the real-world applicability and practical benefits of D-Wave's quantum supremacy claims in computational tasks. Despite the criticisms, D-Wave is standing by the claims from the study. Recommended read:
References :
Cierra Choucair@The Quantum Insider
//
NVIDIA is establishing the Accelerated Quantum Research Center (NVAQC) in Boston to integrate quantum hardware with AI supercomputers. The aim of the NVAQC is to enable accelerated quantum supercomputing, addressing quantum computing challenges such as qubit noise and error correction. Commercial and academic partners will work with NVIDIA, with collaborations involving industry leaders like Quantinuum, Quantum Machines, and QuEra, as well as researchers from Harvard's HQI and MIT's EQuS.
NVIDIA's GB200 NVL72 systems and the CUDA-Q platform will power research on quantum simulations, hybrid quantum algorithms, and AI-driven quantum applications. The center will support the broader quantum ecosystem, accelerating the transition from experimental to practical quantum computing. Despite the CEO's recent statement that practical quantum systems are likely still 20 years away, this investment shows confidence in the long-term potential of the technology. Recommended read:
References :
Dean Takahashi@AI News | VentureBeat
//
Recent breakthroughs are accelerating the progress in quantum computing. Researchers have experimentally recreated a fundamental theoretical model from quantum physics using nanographene molecules, paving the way for versatile research in quantum technologies. In another development, Irish startup Equal1 has unveiled the world's first silicon-based quantum computer, named Bell-1, which utilizes a hybrid quantum-classical silicon chip for accelerated quantum computing.
Meanwhile, Nvidia is constructing an accelerated quantum computing research center in Boston to integrate quantum hardware with AI supercomputers, aiming to tackle challenges like qubit noise and transform experimental processors into practical devices. Delft Circuits has also launched a turnkey High-Density Input/Output (HD I/O) system to address scalability bottlenecks in quantum computing connectivity. This system boasts 256 channels per module and modular expandability, offering a streamlined solution for connecting control electronics to Quantum Processing Units. Recommended read:
References :
Harry Goldstein@IEEE Spectrum
//
References:
The Quantum Insider
, The Quantum Insider
,
The quantum computing field is experiencing a surge in activity, with several significant developments reported recently. VTT Technical Research Centre of Finland and IQM Quantum Computers have unveiled Europe's first 50-qubit superconducting quantum computer, accessible to researchers and companies through the VTT QX quantum computing service. This milestone strengthens Finland's position as a global leader in quantum computing, following a phased development plan that began with a 5-qubit system in 2021.
Chinese researchers have also made headlines with their Zuchongzhi 3.0, a 105-qubit superconducting quantum processor. They claim it completed a computational task in seconds that would take the world’s most powerful supercomputer an estimated 6.4 billion years to replicate. While the task was a benchmark designed to favor quantum processors, it still reinforces the potential for quantum computational advantage. Also, Mitsubishi Electric and partners are collaborating to develop scalable quantum information processing by connecting multiple quantum devices in practical environments, addressing limitations in single quantum computers. Recommended read:
References :
Alyssa Hughes (2ADAPTIVE LLC dba 2A Consulting)@Microsoft Research
//
Microsoft has announced a potential breakthrough in quantum computing with its creation of topological qubits and the unveiling of the Majorana 1 quantum processor. This development aims to redefine quantum computing by utilizing a new state of matter called "topological superconductivity." According to Microsoft, this achievement marks a significant step towards realizing the full potential of quantum computers, with Dr. Chetan Nayak highlighting the advancements and the necessity of quantum computers even amidst the rise of generative AI.
The Majorana 1 processor is designed to potentially house up to a million qubits, which could enable it to tackle complex tasks such as cracking cryptographic codes and accelerating the discovery of new drugs and materials. However, despite the promising claims, the quantum community remains somewhat skeptical. While Microsoft has published research, including a paper in Nature and a roadmap, independent confirmation of the hardware's capabilities is still pending. The peer-reviewed paper only partially supports the claims, and significant hurdles remain before these quantum computers can be fully realized. Concerns have been raised regarding the validity and interpretation of Microsoft's experiments. The Conversation features an article from Stephan Rachel, a professor of Physics, who discussed the breakthrough. Despite the questions, the news from Microsoft is regarded as hopeful. Microsoft has been developing this new state of matter for nearly two decades. Recommended read:
References :
|
Blogs
|