@www.iansresearch.com
//
The increasing capabilities of quantum computers are posing a significant threat to current encryption methods, potentially jeopardizing the security of digital assets and the Internet of Things. Researchers at Google Quantum AI are urging software developers and encryption experts to accelerate the implementation of next-generation cryptography, anticipating that quantum computers will soon be able to break widely used encryption standards like RSA. This urgency is fueled by new estimates suggesting that breaking RSA encryption may be far easier than previously believed, with a quantum computer containing approximately 1 million qubits potentially capable of cracking it. Experts recommend that vulnerable systems should be deprecated after 2030 and disallowed after 2035.
Last week, Craig Gidney from Google Quantum AI published research that significantly lowers the estimated quantum resources needed to break RSA-2048. Where previous estimates projected that cracking RSA-2048 would require around 20 million qubits and 8 hours of computation, the new analysis reveals that it could be done in under a week using fewer than 1 million noisy qubits. This more than 95% reduction in hardware requirements is a seismic shift in the projected timeline for "Q-Day," the hypothetical moment when quantum computers can break modern encryption. RSA encryption, used in secure web browsing, email encryption, VPNs, and blockchain systems, relies on the difficulty of factoring large numbers into their prime components. Quantum computers, leveraging Shor's algorithm, can exponentially accelerate this process. Recent innovations, including Approximate Residue Arithmetic, Magic State Cultivation, Optimized Period Finding with Ekerå-Håstad Algorithms, and Yoked Surface Codes & Sparse Lookups, have collectively reduced the physical qubit requirement to under 1 million and allow the algorithm to complete in less than 7 days. Recommended read:
References :
@medium.com
//
Cryptography is a critical component in today's digital landscape, ensuring secure communication, data integrity, and user authentication across various platforms. Cryptography, or “secret writing”, has been used for centuries, evolving from ancient methods like the Caesar cipher to modern, complex algorithms. In the Ethereum blockchain, cryptography is the foundation of security, underpinning trustless transactions and immutable data accessible only to authorized users. Key areas where cryptography manifests in Ethereum include digital signatures, used as electronic stamps of authenticity, and cryptographic hashes, which serve as digital fingerprints for data. Cryptography is essential for securing data in transit, verifying identities, and safeguarding sensitive information such as passwords.
Asymmetric encryption, also known as public-key cryptography (PKC), plays a vital role in Ethereum. This method uses key pairs consisting of a public key, shared freely, and a private key, kept securely. Ethereum leverages elliptic curve cryptography, specifically the secp256k1 algorithm, to generate these key pairs. This algorithm relies on mathematical properties of elliptic curves with finite fields. Quantum-resistant cryptography is also gaining traction in blockchain security due to the emerging threat of quantum computers, which have the potential to break current encryption methods like RSA and ECC. In 2025, blockchain platforms are actively testing post-quantum cryptography to ensure the long-term safety of old data, secure smart contracts, and maintain user trust. Quantum computing advancements pose a significant risk to current cryptographic methods. The U.S. House Committee on Science, Space, and Technology convened in May 2025 to discuss the future of the National Quantum Initiative (NQI). Industry leaders testified on the need to reauthorize and expand the NQI to maintain U.S. leadership in quantum technology. To counter the potential quantum threat to blockchain, developers are exploring quantum-resistant wallets and smart contract tools. Some new blockchains, like QANplatform and XX Network, are building with post-quantum crypto from the start. The importance of sustained investment in quantum sciences and the development of a skilled workforce were highlighted. Recommended read:
References :
@medium.com
//
References:
medium.com
, Peter Bendor-Samuel
,
Quantum computing is rapidly advancing, bringing both immense potential and significant cybersecurity risks. The UK’s National Cyber Security Centre (NCSC) and experts across the globe are warning of a "colossal" overhaul needed in digital defenses to prepare for the quantum era. The concern is that powerful quantum computers could render current encryption methods obsolete, breaking security protocols that protect financial transactions, medical records, military communications, and blockchain technology. This urgency is underscored by the threat of "harvest now, decrypt later" attacks, where sensitive data is collected and stored for future decryption once quantum computers become powerful enough.
Across the globe, governments and organizations are scrambling to prepare for a quantum future by adopting post-quantum cryptography (PQC). PQC involves creating new encryption algorithms resistant to attacks from both classical and quantum computers. The U.S. National Institute of Standards and Technology (NIST) has already released several algorithms believed to be secure from quantum hacking. The NCSC has issued guidance, setting clear timelines for the UK’s migration to PQC, advising organizations to complete the transition by 2035. Industry leaders are also urging the U.S. Congress to reauthorize and expand the National Quantum Initiative to support research, workforce development, and a resilient supply chain. Oxford Ionics is one of the companies leading the way in quantum computing development. Oxford has released a multi-phase roadmap focused on achieving scalability and fault tolerance in their trapped-ion quantum computing platform. Their strategy includes the 'Foundation' phase, which involves deploying QPUs with 16-64 qubits with 99.99% fidelity, already operational. The second phase introduces chips with 256+ qubits and error rates as low as 10-8 via quantum error correction (QEC). The goal is to scale to over 10,000 physical qubits per chip, supporting 700+ logical qubits with minimal infrastructure change. There are also multiple bills introduced in the U.S. Congress and the state of Texas to foster the advancement of quantum technology. Recommended read:
References :
Siôn Geschwindt@The Next Web
//
References:
The Next Web
, medium.com
,
Quantum computing is rapidly advancing, presenting both opportunities and challenges. Researchers at Toshiba Europe have achieved a significant milestone by transmitting quantum-encrypted messages over a record distance of 254km using standard fiber optic cables. This breakthrough, facilitated by quantum key distribution (QKD) cryptography, marks the first instance of coherent quantum communication via existing telecom infrastructure. QKD leverages the principles of quantum mechanics to securely share encryption keys, making eavesdropping virtually impossible, as any attempt to intercept the message would immediately alert both parties involved.
This advance addresses growing concerns among European IT professionals, with 67% fearing that quantum computing could compromise current encryption standards. Unlike classical computers, which would take an impractical amount of time to break modern encryption, quantum computers can exploit phenomena like superposition and entanglement to potentially crack even the most secure classical encryptions within minutes. This has prompted global governments and organizations to accelerate the development of robust cryptographic algorithms capable of withstanding quantum attacks. Efforts are underway to build quantum-secure communication infrastructure. Heriot-Watt University recently inaugurated a £2.5 million Optical Ground Station (HOGS) to promote satellite-based quantum-secure communication. In July 2024, Toshiba Europe, GÉANT, PSNC, and Anglia Ruskin University demonstrated cryogenics-free QKD over a 254 km fiber link, using standard telecom racks and room temperature detectors. Initiatives such as Europe’s EuroQCI and ESA’s Eagle-1 satellite further underscore the commitment to developing and deploying quantum-resistant technologies, mitigating the silent threat that quantum computing poses to cybersecurity. Recommended read:
References :
@thequantuminsider.com
//
Heriot-Watt University has launched a £2.5 million Optical Ground Station (HOGS) at its Research Park in Edinburgh, marking a significant advancement in satellite-based quantum-secure communication. The facility, developed under the UK Quantum Communications Hub, features a 70-cm precision telescope equipped with adaptive optics and quantum detectors. This investment positions Heriot-Watt at the forefront of quantum communication research and development.
The HOGS facility will enable quantum key distribution (QKD) experiments with satellites, facilitating secure communication channels resistant to future decryption by quantum computers. The station is equipped to monitor space debris and test ultra-high-speed optical communications for next-generation networks. This is the UK’s first major infrastructure investment in free-space quantum key distribution research, as it will serve as a testbed for space-to-ground optical links that use quantum-secure protocols to exchange encryption keys via single photons. The project marks a major step in the UK’s efforts to build a quantum-secure internet, offering a unique testbed for industry and academia. Connected via dark fibre to Heriot-Watt’s quantum labs, HOGS enables real-time simulation and validation of urban to intercontinental optical quantum networks. HOGS is part of Heriot-Watt’s leadership in the new Integrated Quantum Networks (IQN) Hub, positioning the university as a central player in the development of quantum-secure communications. The facility aims to grow Scotland’s space economy and future workforce, partnering with universities, national laboratories, and businesses, including STEM programs for students. Recommended read:
References :
|
Blogs
|