Greg Bock@thequantuminsider.com
//
Quantum computing has taken a significant leap forward with Phasecraft's development of a novel quantum simulation method called THRIFT (Trotter Heuristic Resource Improved Formulas for Time-dynamics). This breakthrough, detailed in a recent *Nature Communications* publication, drastically improves simulation efficiency and lowers computational costs, bringing real-world quantum applications closer to reality. THRIFT optimizes quantum simulations by prioritizing interactions with different energy scales within quantum systems, streamlining their implementation into smaller, more manageable steps.
This approach allows for larger and longer simulations to be executed without the need for increased quantum circuit size, thereby reducing computational resources and costs. In benchmarking tests using the 1D transverse-field Ising model, a widely used benchmark in quantum physics, THRIFT achieved a tenfold improvement in both simulation estimates and circuit complexities, enabling simulations that are ten times larger and run ten times longer compared to traditional methods. This development holds immense promise for advancements in materials science and drug discovery. Separately, mathematicians have achieved a breakthrough in understanding and modeling melting ice and other similar phenomena through a new proof that resolves long-standing issues related to singularities. A powerful mathematical technique used to model melting ice and other phenomena had been hampered by “nightmare scenarios.” A new proof has removed that obstacle. This new proof addresses concerns about "nightmare scenarios" that previously hindered the analysis of these processes, ensuring that singularities do not impede the continued evolution of the surface being modeled. The resolution, described in Quanta Magazine, allows mathematicians to more effectively assess the surface's evolution even after a singularity appears. Finally, researchers at Cornell University have introduced a novel data representation method inspired by quantum mechanics that tackles the challenge of handling big, noisy data sets. This quantum statistical approach simplifies large data sets and filters out noise, allowing for more efficient analysis than traditional methods. By borrowing mathematical structures from quantum mechanics, this technique enables a more concise representation of complex data, potentially revolutionizing innovation in data-rich fields such as healthcare and epigenetics where traditional methods have proven insufficient. References :
Classification:
Matt Swayne@thequantuminsider.com
//
D-Wave Quantum Inc. has made a splash by claiming its Advantage2 annealing quantum computer achieved quantum supremacy in complex materials simulations, publishing their study in the journal Science. The company states that its system can perform simulations in minutes that would take the Frontier supercomputer nearly a million years and consume more than the world’s annual electricity consumption. According to D-Wave CEO Alan Baratz, this achievement validates quantum annealing's practical advantage and represents a major milestone in quantum computational supremacy and materials discovery.
However, D-Wave's claim has faced criticism, with researchers suggesting that classical algorithms can rival or even exceed quantum methods in these simulations. Some researchers say that they performed similar calculations on a normal laptop in just two hours. Concerns have been raised about the real-world applicability and practical benefits of D-Wave's quantum supremacy claims in computational tasks. Despite the criticisms, D-Wave is standing by the claims from the study. References :
Classification:
|
Blogs
|