@www.marktechpost.com
//
Google DeepMind has launched AlphaGenome, a new deep learning framework designed to predict the regulatory consequences of DNA sequence variations. This AI model aims to decode how mutations affect non-coding DNA, which makes up 98% of the human genome, potentially transforming the understanding of diseases. AlphaGenome processes up to one million base pairs of DNA at once, delivering predictions on gene expression, splicing, chromatin accessibility, transcription factor binding, and 3D genome structure.
AlphaGenome stands out by comprehensively predicting the impact of single variants or mutations, especially in non-coding regions, on gene regulation. It uses a hybrid neural network that combines convolutional layers and transformers to digest long DNA sequences. The model addresses limitations in earlier models by bridging the gap between long-sequence input processing and nucleotide-level output precision, unifying predictive tasks across 11 output modalities and handling thousands of human and mouse genomic tracks. This makes AlphaGenome one of the most comprehensive sequence-to-function models in genomics. The AI tool is available via API for non-commercial research to advance scientific research and is planned to be released to the general public in the future. In performance tests, AlphaGenome outperformed or matched the best external models on 24 out of 26 variant effect prediction benchmarks. According to DeepMind's Vice President for Research Pushmeet Kohli, AlphaGenome unifies many different challenges that come with understanding the genome. The model can help researchers identify disease-causing variants and better understand genome function and disease biology, potentially driving new biological discoveries and the development of new treatments. References :
Classification:
@www.marktechpost.com
//
Google has unveiled a new AI model designed to forecast tropical cyclones with improved accuracy. Developed through a collaboration between Google Research and DeepMind, the model is accessible via a newly launched website called Weather Lab. The AI aims to predict both the path and intensity of cyclones days in advance, overcoming limitations present in traditional physics-based weather prediction models. Google claims its algorithm achieves "state-of-the-art accuracy" in forecasting cyclone track and intensity, as well as details like formation, size, and shape.
The AI model was trained using two extensive datasets: one describing the characteristics of nearly 5,000 cyclones from the past 45 years, and another containing millions of weather observations. Internal testing demonstrated the algorithm's ability to accurately predict the paths of recent cyclones, in some cases up to a week in advance. The model can generate 50 possible scenarios, extending forecast capabilities up to 15 days. This breakthrough has already seen adoption by the U.S. National Hurricane Center, which is now using these experimental AI predictions alongside traditional forecasting models in its operational workflow. Google's AI's ability to forecast up to 15 days in advance marks a significant improvement over current models, which typically provide 3-5 day forecasts. Google made the AI accessible through a new website called Weather Lab. The model is available alongside two years' worth of historical forecasts, as well as data from traditional physics-based weather prediction algorithms. According to Google, this could help weather agencies and emergency service experts better anticipate a cyclone’s path and intensity. References :
Classification:
@Google DeepMind Blog
//
Google DeepMind has introduced AlphaEvolve, a revolutionary AI coding agent designed to autonomously discover innovative algorithms and scientific solutions. This groundbreaking research, detailed in the paper "AlphaEvolve: A Coding Agent for Scientific and Algorithmic Discovery," represents a significant step towards achieving Artificial General Intelligence (AGI) and potentially even Artificial Superintelligence (ASI). AlphaEvolve distinguishes itself through its evolutionary approach, where it autonomously generates, evaluates, and refines code across generations, rather than relying on static fine-tuning or human-labeled datasets. AlphaEvolve combines Google’s Gemini Flash, Gemini Pro, and automated evaluation metrics.
AlphaEvolve operates using an evolutionary pipeline powered by large language models (LLMs). This pipeline doesn't just generate outputs—it mutates, evaluates, selects, and improves code across generations. The system begins with an initial program and iteratively refines it by introducing carefully structured changes. These changes take the form of LLM-generated diffs—code modifications suggested by a language model based on prior examples and explicit instructions. A diff in software engineering refers to the difference between two versions of a file, typically highlighting lines to be removed or replaced. Google's AlphaEvolve is not merely another code generator, but a system that generates and evolves code, allowing it to discover new algorithms. This innovation has already demonstrated its potential by shattering a 56-year-old record in matrix multiplication, a core component of many machine learning workloads. Additionally, AlphaEvolve has reclaimed 0.7% of compute capacity across Google's global data centers, showcasing its efficiency and cost-effectiveness. AlphaEvolve imagined as a genetic algorithm coupled to a large language model. References :
Classification:
|
Blogs
|