Source Asia@Source Asia
//
References:
news.microsoft.com
, Microsoft Research
Microsoft Research has unveiled Aurora, a groundbreaking AI foundation model with 1.3 billion parameters, that is set to revolutionize Earth system forecasting. This innovative model outperforms traditional operational forecasts in critical areas such as air quality prediction, ocean wave forecasting, tropical cyclone tracking, and high-resolution weather prediction. Aurora achieves this superior performance at significantly lower computational costs, marking a significant advancement in the field. The model's capabilities extend beyond traditional weather forecasting, positioning it as a versatile tool for addressing a wide range of environmental challenges.
Aurora's architecture, based on Perceiver IO, allows it to efficiently process structured inputs and outputs, making it well-suited for complex Earth system data. Researchers at Microsoft have trained Aurora on an unprecedented volume of atmospheric data, incorporating information from satellites, radar, weather stations, simulations, and forecasts. This extensive training enables Aurora to rapidly generate forecasts and adapt to specific tasks through fine-tuning with smaller, task-specific datasets. The model's flexibility and ability to learn from diverse data sources are key factors in its exceptional forecasting accuracy. The development of Aurora signifies a major step forward in applying AI to Earth science. By demonstrating the potential of foundation models to accurately and efficiently predict various environmental phenomena, Aurora paves the way for new approaches to disaster preparedness, resource management, and climate change mitigation. The publicly available code and weights of Aurora, accessible on GitHub, encourage further research and development in this exciting area. Microsoft's work underscores the transformative power of AI in addressing some of the world's most pressing environmental challenges. Recommended read:
References :
Source Asia@Source Asia
//
Microsoft's Aurora AI model is revolutionizing weather forecasting by providing accurate 10-day forecasts in mere seconds. This AI foundation model, developed by Microsoft Research, has demonstrated capabilities that extend beyond traditional weather prediction, encompassing environmental events such as tropical cyclones, air quality, and ocean waves. Aurora achieves this by training on a massive dataset of over one million hours of atmospheric data from satellites, radar, weather stations, simulations, and forecasts, which Microsoft believes is the largest collection ever assembled for training an AI forecasting model. The model's speed and accuracy have the potential to improve safety and inform decisions across various sectors.
The core strength of Aurora lies in its foundation model architecture. It's not simply limited to weather forecasting; it can be fine-tuned for specific environmental prediction tasks. After initial training on general weather patterns, Aurora can be adapted with smaller datasets to forecast elements like wave height or air quality. The AI does not fully grasp the physical laws governing weather, but its use for environmental prediction tasks and ability to provide accurate forecasts is still significant. This flexibility makes it a versatile tool for understanding and predicting various aspects of the Earth system. Aurora's performance has been noteworthy, beating existing numerical and AI models across 91 percent of forecasting targets when fine-tuned to medium-range weather forecasts. Its rapid processing time, taking seconds compared to the hours required by traditional models, makes it a valuable asset for timely decision-making. Microsoft is leveraging AI technology to make weather forecasting more efficient and accurate. While generative AI is revolutionizing how we do things, integrating it into workflows is making work easier by automating redundant tasks, creating more time to focus on more important tasks. Recommended read:
References :
Source Asia@Source Asia
//
Microsoft's Aurora AI foundation model is revolutionizing weather and environmental forecasting, offering quicker and more accurate predictions compared to traditional methods. Developed by Microsoft Research, Aurora is a large-scale AI model trained on a vast dataset of atmospheric information, including satellite data, radar readings, weather station observations, and simulations. This comprehensive training allows Aurora to forecast a range of environmental events, from hurricanes and typhoons to air quality and ocean waves, with exceptional precision and speed. The model's capabilities extend beyond conventional weather forecasting, making it a versatile tool for understanding and predicting environmental changes.
Aurora's unique architecture enables it to be fine-tuned for specific tasks using modest amounts of additional data. This "fine-tuning" process allows the model to generate forecasts in seconds, demonstrating its efficiency and adaptability. Researchers have shown that Aurora outperforms existing numerical and AI models in 91% of forecasting targets when fine-tuned for medium-range weather forecasts. Its ability to accurately predict hurricane trajectories and other extreme weather events highlights its potential to improve disaster preparedness and response efforts, ultimately saving lives and mitigating damage. Senior researchers Megan Stanley and Wessel Bruinsma emphasized Aurora's broader impact on environmental science, noting its potential to revolutionize the field. In a paper published in Nature, they highlighted Aurora's ability to correctly forecast hurricanes in 2023 more accurately than operational forecasting centers, such as the US National Hurricane Center. Aurora also demonstrated its capabilities when correctly forecasting where and when Doksuri would hit the Philippines four days in advance. These findings underscore the transformative potential of AI in addressing complex environmental challenges and paving the way for more effective climate modeling and environmental event management. Recommended read:
References :
Editor-In-Chief, BitDegree@bitdegree.org
//
A new, fully AI-driven weather prediction system called Aardvark Weather is making waves in the field. Developed through an international collaboration including researchers from the University of Cambridge, Alan Turing Institute, Microsoft Research, and the European Centre for Medium-Range Weather Forecasts (ECMWF), Aardvark Weather uses a deep learning architecture to process observational data and generate high-resolution forecasts. The model is designed to ingest data directly from observational sources, such as weather stations and satellites.
This innovative system stands out because it can run on a single desktop computer, generating forecasts tens of times faster than traditional systems and requiring thousands of times less computing power. While traditional weather forecasting relies on Numerical Weather Prediction (NWP) models that use physics-based equations and vast computational resources, Aardvark Weather replaces all stages of this process with a streamlined machine learning model. According to researchers, Aardvark Weather can generate a forecast in seconds or minutes, using only about 10% of the weather data required by current forecasting systems. Recommended read:
References :
|
Blogs
|