Sabine Hossenfelder@backreaction.blogspot.com
//
References:
aasnova.org
Recent advancements in physics and astrophysics are focusing on complex simulations and interpretations of celestial phenomena, particularly concerning black holes, gravitational lensing, and active galactic nuclei. A key development is the introduction of new ray-tracing algorithms designed to make these simulations more accessible. These algorithms, like the newly developed "Mahakala," enable researchers to expertly track photons navigating the warped spacetimes around black holes, simulating images of active black holes with greater ease and speed.
One significant application of these techniques involves studying gravitationally lensed objects, such as the redshift z = 6.2 star Earendel. Researchers are exploring how the presence of dark matter subhalos can alter the interpretation of these lensed sources, highlighting the importance of precise modeling in understanding distant celestial bodies. Furthermore, X-ray observations from missions like XRISM are providing new insights into the structure of low-luminosity active galactic nuclei (LLAGN), a population of accreting black holes that are still poorly understood. XRISM's observations of Messier 81, a nearby galaxy hosting an LLAGN, are helping to determine if these systems conform to the typical model of active galactic nuclei. In a more theoretical realm, some physicists are exploring the intriguing idea that our universe may exist inside a black hole. This hypothesis, while seemingly radical, is being considered as a potential explanation for certain cosmological phenomena. Simultaneously, past findings, such as the unusual particles detected by the ANITA experiment over Antarctica, are being re-evaluated with more conventional explanations, moving away from more exotic theories like parallel universes. These diverse lines of inquiry demonstrate the ongoing efforts to refine our understanding of the universe, from the smallest particles to the largest cosmic structures. Recommended read:
References :
@phys.org
//
References:
bigthink.com
, phys.org
Recent research is challenging previous assumptions about the composition and structure of the smallest galaxies. Traditionally believed to be dominated by dark matter due to the expulsion of normal matter through stellar winds and radiation during star formation, new evidence suggests that supermassive black holes may play a more significant role than previously thought. A recent study indicates that Segue 1, known as the most dark matter-dominated galaxy, might harbor a supermassive black hole at its center, potentially altering our understanding of galactic dynamics in low-mass systems. This proposition offers an alternative explanation for the observed gravitational effects, suggesting that these central black holes could be anchoring these tiny galaxies.
The realm of statistical analysis is also undergoing significant advancements. Mathematician Tyron Lardy has pioneered a novel approach to hypothesis testing, utilizing e-values instead of the conventional p-values. E-values, representing 'expected value', provide greater flexibility, particularly during mid-study analysis when adjustments to data collection or analysis plans are necessary. Unlike p-values, which require conclusions to be drawn only after all data is gathered to maintain statistical validity, e-values remain statistically sound even with modifications to the research process. This advancement holds promise for fields like medicine and psychology, where complex situations often demand adaptable data handling techniques. The development of e-values is based on the concept of betting, where the e-value signifies the potential earnings from such bets, offering quantifiable evidence against the initial assumption. This approach allows researchers to assess whether an assumption still holds true. While the general method for calculating optimal e-values can be intricate, its flexibility and robustness in handling data adjustments offer a valuable tool for scientific research, enhancing the reliability and adaptability of hypothesis testing in various disciplines. Recommended read:
References :
@quantumcomputingreport.com
//
References:
thequantuminsider.com
, Quantum Computing Report
,
The quantum computing industry is experiencing a surge in activity, marked by significant acquisitions and technological advancements. IonQ has announced its intent to acquire UK-based Oxford Ionics for $1.075 billion in stock and cash, uniting two leaders in trapped-ion quantum computing. This deal aims to accelerate the development of scalable and reliable quantum systems, targeting 256 high-fidelity qubits by 2026 and over 10,000 physical qubits by 2027. The acquisition combines IonQ's quantum computing stack with Oxford Ionics' semiconductor-compatible ion-trap technology, strengthening IonQ's technical capabilities and expanding its European presence. CEO of IonQ, Niccolo de Masi, highlighted the strategic importance of this acquisition, uniting talent from across the world to become the world’s best quantum computing, quantum communication and quantum networking ecosystem.
Recent advancements also include the activation of Europe’s first room-temperature quantum accelerator by Fraunhofer IAF, featuring Quantum Brilliance’s diamond-based QB-QDK2.0 system. This system utilizes nitrogen-vacancy (NV) centers and operates without cryogenic requirements, seamlessly integrating into existing high-performance computing environments. It's co-located with classical processors and NVIDIA GPUs to support hybrid quantum-classical workloads. Moreover, IBM has announced plans to build the world’s first large-scale, error-corrected quantum computer named Starling, aiming for completion by 2028 and cloud availability by 2029. IBM claims it has cracked the code for quantum error correction, moving from science to engineering. Further bolstering the industry's growth, collaborative projects are demonstrating the potential of quantum computing in various applications. IonQ, in partnership with AstraZeneca, AWS, and NVIDIA, has showcased a quantum-accelerated drug discovery workflow that drastically reduces simulation time for key pharmaceutical reactions. Their hybrid system, integrating IonQ’s Forte quantum processor with NVIDIA CUDA-Q and AWS infrastructure, achieved over a 20-fold improvement in time-to-solution for the Suzuki-Miyaura reaction. Additionally, the Karnataka State Cabinet has approved the second phase of the Quantum Research Park at the Indian Institute of Science (IISc) in Bengaluru, allocating ₹48 crore ($5.595 million USD) to expand the state’s quantum technology infrastructure and foster collaboration between academia, startups, and industry. Recommended read:
References :
@www.quantamagazine.org
//
Fermilab has announced the final results from its Muon g-2 experiment, aiming to resolve a long-standing anomaly regarding the magnetic moment of muons. This experiment delves into the quantum realm, exploring how short-lived particles popping in and out of existence influence the magnetic properties of muons. The initial results from this experiment suggested that the Standard Model of physics might be incomplete, hinting at the presence of undiscovered particles or forces.
The experiment's findings continue to show a discrepancy between experimental measurements and the predictions of the Standard Model. However, the statistical significance of this discrepancy has decreased due to improvements in theoretical calculations. This implies that while the Standard Model may not fully account for the behavior of muons, the evidence for new physics is not as strong as previously thought. The result is at 4.2σ (standard deviations) away from what's calculated using the Standard Model, which is a bit short of the 5 sigma normally used to declare a discovery. There's about a 1 in 40,000 chance that this is a fluke. Despite the reduced statistical significance, the results remain intriguing and motivate further research. The possibility of undiscovered particles influencing muons still exists, pushing physicists to explore new theoretical models and conduct additional experiments. Fermilab shared first results from their "g-2" experiment showing the Standard Model of physics is even more incomplete than we thought. If the universe includes particles we don't yet know about, these too will show up as fluctuations around particles, influencing the properties we can measure. Recommended read:
References :
|
Blogs
|