Top Mathematics discussions

NishMath - #physics

Sabine Hossenfelder@backreaction.blogspot.com //
References: aasnova.org
Recent advancements in physics and astrophysics are focusing on complex simulations and interpretations of celestial phenomena, particularly concerning black holes, gravitational lensing, and active galactic nuclei. A key development is the introduction of new ray-tracing algorithms designed to make these simulations more accessible. These algorithms, like the newly developed "Mahakala," enable researchers to expertly track photons navigating the warped spacetimes around black holes, simulating images of active black holes with greater ease and speed.

One significant application of these techniques involves studying gravitationally lensed objects, such as the redshift z = 6.2 star Earendel. Researchers are exploring how the presence of dark matter subhalos can alter the interpretation of these lensed sources, highlighting the importance of precise modeling in understanding distant celestial bodies. Furthermore, X-ray observations from missions like XRISM are providing new insights into the structure of low-luminosity active galactic nuclei (LLAGN), a population of accreting black holes that are still poorly understood. XRISM's observations of Messier 81, a nearby galaxy hosting an LLAGN, are helping to determine if these systems conform to the typical model of active galactic nuclei.

In a more theoretical realm, some physicists are exploring the intriguing idea that our universe may exist inside a black hole. This hypothesis, while seemingly radical, is being considered as a potential explanation for certain cosmological phenomena. Simultaneously, past findings, such as the unusual particles detected by the ANITA experiment over Antarctica, are being re-evaluated with more conventional explanations, moving away from more exotic theories like parallel universes. These diverse lines of inquiry demonstrate the ongoing efforts to refine our understanding of the universe, from the smallest particles to the largest cosmic structures.

Recommended read:
References :
  • aasnova.org: A new fast and flexible ray-tracing algorithm aims to make the complex world of general relativistic magnetohydrodynamics simulations more approachable.

@phys.org //
References: bigthink.com , phys.org
Recent research is challenging previous assumptions about the composition and structure of the smallest galaxies. Traditionally believed to be dominated by dark matter due to the expulsion of normal matter through stellar winds and radiation during star formation, new evidence suggests that supermassive black holes may play a more significant role than previously thought. A recent study indicates that Segue 1, known as the most dark matter-dominated galaxy, might harbor a supermassive black hole at its center, potentially altering our understanding of galactic dynamics in low-mass systems. This proposition offers an alternative explanation for the observed gravitational effects, suggesting that these central black holes could be anchoring these tiny galaxies.

The realm of statistical analysis is also undergoing significant advancements. Mathematician Tyron Lardy has pioneered a novel approach to hypothesis testing, utilizing e-values instead of the conventional p-values. E-values, representing 'expected value', provide greater flexibility, particularly during mid-study analysis when adjustments to data collection or analysis plans are necessary. Unlike p-values, which require conclusions to be drawn only after all data is gathered to maintain statistical validity, e-values remain statistically sound even with modifications to the research process. This advancement holds promise for fields like medicine and psychology, where complex situations often demand adaptable data handling techniques.

The development of e-values is based on the concept of betting, where the e-value signifies the potential earnings from such bets, offering quantifiable evidence against the initial assumption. This approach allows researchers to assess whether an assumption still holds true. While the general method for calculating optimal e-values can be intricate, its flexibility and robustness in handling data adjustments offer a valuable tool for scientific research, enhancing the reliability and adaptability of hypothesis testing in various disciplines.

Recommended read:
References :
  • bigthink.com: bigthink.com/starts-with-a-bang/supermassive-black-holes-tiniest-galaxies
  • phys.org: Smarter hypothesis testing with statistics: How e-values can improve scientific research

@quantumcomputingreport.com //
References: thequantuminsider.com , ,
The quantum computing industry is experiencing a surge in activity, marked by significant acquisitions and technological advancements. IonQ has announced its intent to acquire UK-based Oxford Ionics for $1.075 billion in stock and cash, uniting two leaders in trapped-ion quantum computing. This deal aims to accelerate the development of scalable and reliable quantum systems, targeting 256 high-fidelity qubits by 2026 and over 10,000 physical qubits by 2027. The acquisition combines IonQ's quantum computing stack with Oxford Ionics' semiconductor-compatible ion-trap technology, strengthening IonQ's technical capabilities and expanding its European presence. CEO of IonQ, Niccolo de Masi, highlighted the strategic importance of this acquisition, uniting talent from across the world to become the world’s best quantum computing, quantum communication and quantum networking ecosystem.

Recent advancements also include the activation of Europe’s first room-temperature quantum accelerator by Fraunhofer IAF, featuring Quantum Brilliance’s diamond-based QB-QDK2.0 system. This system utilizes nitrogen-vacancy (NV) centers and operates without cryogenic requirements, seamlessly integrating into existing high-performance computing environments. It's co-located with classical processors and NVIDIA GPUs to support hybrid quantum-classical workloads. Moreover, IBM has announced plans to build the world’s first large-scale, error-corrected quantum computer named Starling, aiming for completion by 2028 and cloud availability by 2029. IBM claims it has cracked the code for quantum error correction, moving from science to engineering.

Further bolstering the industry's growth, collaborative projects are demonstrating the potential of quantum computing in various applications. IonQ, in partnership with AstraZeneca, AWS, and NVIDIA, has showcased a quantum-accelerated drug discovery workflow that drastically reduces simulation time for key pharmaceutical reactions. Their hybrid system, integrating IonQ’s Forte quantum processor with NVIDIA CUDA-Q and AWS infrastructure, achieved over a 20-fold improvement in time-to-solution for the Suzuki-Miyaura reaction. Additionally, the Karnataka State Cabinet has approved the second phase of the Quantum Research Park at the Indian Institute of Science (IISc) in Bengaluru, allocating ₹48 crore ($5.595 million USD) to expand the state’s quantum technology infrastructure and foster collaboration between academia, startups, and industry.

Recommended read:
References :
  • thequantuminsider.com: IonQ has announced the results of a collaborative quantum computing project that could accelerate pharmaceutical research timelines by orders of magnitude.
  • : Fraunhofer IAF Activates Europe’s First Room-Temperature Quantum Accelerator from Quantum Brilliance
  • thequantuminsider.com: IonQ Acquires UK-based Oxford Ionics For $1.075 Billion

@www.quantamagazine.org //
References: astrodon.social , Ray Lee , Ray Lee ...
Fermilab has announced the final results from its Muon g-2 experiment, aiming to resolve a long-standing anomaly regarding the magnetic moment of muons. This experiment delves into the quantum realm, exploring how short-lived particles popping in and out of existence influence the magnetic properties of muons. The initial results from this experiment suggested that the Standard Model of physics might be incomplete, hinting at the presence of undiscovered particles or forces.

The experiment's findings continue to show a discrepancy between experimental measurements and the predictions of the Standard Model. However, the statistical significance of this discrepancy has decreased due to improvements in theoretical calculations. This implies that while the Standard Model may not fully account for the behavior of muons, the evidence for new physics is not as strong as previously thought. The result is at 4.2σ (standard deviations) away from what's calculated using the Standard Model, which is a bit short of the 5 sigma normally used to declare a discovery. There's about a 1 in 40,000 chance that this is a fluke.

Despite the reduced statistical significance, the results remain intriguing and motivate further research. The possibility of undiscovered particles influencing muons still exists, pushing physicists to explore new theoretical models and conduct additional experiments. Fermilab shared first results from their "g-2" experiment showing the Standard Model of physics is even more incomplete than we thought. If the universe includes particles we don't yet know about, these too will show up as fluctuations around particles, influencing the properties we can measure.

Recommended read:
References :
  • astrodon.social: Anomaly no more! “Muon g-2†puzzle resolved at last Can theory and experiment agree on the magnetic moment of the muon? At last, a new theory initiative paper coupled with final, world's best experimental results point to the resolution.
  • Ray Lee: Fermilab is announcing final results from the muon g-2 experiment today! I'm heading out the door, but the results will be at 10am CT. Quoting myself from April 7th, 2021: Fermilab shared first results from their "g-2" experiment showing the Standard Model of physics is even more incomplete than we thought.
  • bigthink.com: Anomaly no more! “Muon g-2†puzzle resolved at last Can theory and experiment agree on the magnetic moment of the muon? At last, a new theory initiative paper coupled with final, world's best experimental results point to the resolution.
  • Ray Lee: I should add, there have been various papers since this announcement back in 2021 that claim the calculations were incomplete and newer methods, such as brute-forcing the calculation via SM lattice methods on supercomputers, has pushed the discrepancy with experiment down to less than 2 sigma. Today we'll learn more! 3/3
  • physics.aps.org: Link to the stream: A rather nice cartoon explainer of all this by Jorge Cham: An accessible and slightly more scientific walkthrough over at Quanta Magazine from 2021: And the below graphic, showing how one particle physicist (who's name escapes me), viewed the tension in the results, four years ago. 2/3

@thequantuminsider.com //
Heriot-Watt University has launched a £2.5 million Optical Ground Station (HOGS) at its Research Park in Edinburgh, marking a significant advancement in satellite-based quantum-secure communication. The facility, developed under the UK Quantum Communications Hub, features a 70-cm precision telescope equipped with adaptive optics and quantum detectors. This investment positions Heriot-Watt at the forefront of quantum communication research and development.

The HOGS facility will enable quantum key distribution (QKD) experiments with satellites, facilitating secure communication channels resistant to future decryption by quantum computers. The station is equipped to monitor space debris and test ultra-high-speed optical communications for next-generation networks. This is the UK’s first major infrastructure investment in free-space quantum key distribution research, as it will serve as a testbed for space-to-ground optical links that use quantum-secure protocols to exchange encryption keys via single photons.

The project marks a major step in the UK’s efforts to build a quantum-secure internet, offering a unique testbed for industry and academia. Connected via dark fibre to Heriot-Watt’s quantum labs, HOGS enables real-time simulation and validation of urban to intercontinental optical quantum networks. HOGS is part of Heriot-Watt’s leadership in the new Integrated Quantum Networks (IQN) Hub, positioning the university as a central player in the development of quantum-secure communications. The facility aims to grow Scotland’s space economy and future workforce, partnering with universities, national laboratories, and businesses, including STEM programs for students.

Recommended read:
References :
  • quantumcomputingreport.com: Heriot-Watt University Opens £2.5M ($3.3M USD) Quantum Optical Ground Station to Advance Secure Satellite Communications
  • : Heriot-Watt University Opens £2.5M ($3.3M USD) Quantum Optical Ground Station to Advance Secure Satellite Communications
  • thequantuminsider.com: Heriot-Watt Opens $3M Quantum Satellite Research Facility, UK’s First Optical QKD Station
  • thequantuminsider.com: Congress will ultimately decide how much quantum funding is preserved or expanded. But the White House’s proposal seems to be signaling that quantum matters, but it must compete with a number of other priorities.

@physics.mit.edu //
NASA astronaut Chris Williams, who earned a doctorate in physics from MIT in 2012, is set to launch to the International Space Station (ISS) on a Russian Soyuz rocket no earlier than November 2025. The rookie astronaut, a member of NASA's 23rd astronaut class, will join cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev aboard the Soyuz MS-28, launching from Baikonur Cosmodrome in Kazakhstan. Williams will spend approximately eight months on the ISS as part of Expedition 74, serving as a flight engineer and continuing ongoing microgravity investigations into the effects of spaceflight.

This mission marks Williams' first assignment to space after completing his training. Prior to joining NASA, Williams completed a Medical Physics Residency training at Harvard Medical School and conducted research as a clinical physicist at Brigham and Women’s Hospital. His selection for the Soyuz MS-28 mission follows the recent launch of fellow classmate Nichole Ayers on SpaceX's Crew-10 mission and the selection of Andre Douglas as part of NASA's Artemis 2 backup crew. The MS-28 crew will replace the MS-27 astronauts, including NASA's Jonny Kim, who arrived at the ISS in April.

Separately, a new physics model has been developed to analyze the intricacies of bowling and determine the optimal conditions for achieving strikes. The model utilizes six differential equations relating to a rotating rigid body. This research considers several factors that influence a bowling ball's trajectory, including the composition and application of oil on bowling lanes, as well as the inherent asymmetries of bowling balls. The team of physicists involved in the study includes individuals with a strong background in bowling, including one who serves as a coach for Team England at the European Youth Championships. The study aims to move beyond statistical analysis of empirical data and provide a more comprehensive understanding of the physics behind bowling.

Recommended read:
References :
  • arstechnica.com: "This isn't 'Nam, this is bowling, there are rules..." The physics of bowling strike after strike. New model uses 6 differential equations relating to a rotating rigid body for best strike conditions.
  • physics.mit.edu: Rookie NASA astronaut Chris Williams PhD ’12 will launch to the ISS on a Russian rocket later this year

@www.quantamagazine.org //
Recent advancements in mathematics and physics are pushing the boundaries of our understanding of the universe. A decades-old bet between mathematicians Noga Alon and Peter Sarnak regarding the nature of optimal expander graphs has recently been settled, with both mathematicians being proven wrong. This involved tapping into a crucial phenomenon in physics and pushing it to its limits, demonstrating the interconnectedness of mathematics and physics. Also, Researchers have successfully modeled how 'broken' tulips get their stripes, solving a centuries-old floral mystery. The mathematical model explains that the tulip-breaking virus inhibits the production of anthocyanins, leading to the distinctive striped pattern.

Efforts are underway to bridge the gap between quantum mechanics and general relativity, with researchers exploring the possibility of creating quantum gravity in the lab. Monika Schleier-Smith at Stanford University is leading this effort by using laser-cooled atoms to explore whether gravity could emerge from quantum entanglement. NASA is also contributing to this field by developing the first space-based quantum gravity gradiometer. This gradiometer will use ultra-cold rubidium atoms to detect gravitational anomalies with high precision from orbit, with potential applications in water resource management and subsurface geology.

Further progress is being made in language model development. Researchers are exploring methods to sidestep language in order to improve how language models work with mathematics. By allowing these models to operate directly in mathematical spaces, they aim to enhance efficiency and reasoning capabilities. This research highlights the potential for artificial intelligence systems to benefit from thinking independently of language, paving the way for more advanced and effective AI applications.

Recommended read:
References :