Arezki Amiri@The Daily Galaxy ?Great Discoveries Channel - 55d
Google's new quantum chip, Willow, has achieved a significant milestone by exponentially reducing errors while scaling with more qubits, tackling a key challenge in quantum error correction. This breakthrough allows the system to maintain its quantum state and achieve more accurate computations. The Willow chip also completed a benchmark calculation in under five minutes, a feat that would take today’s fastest supercomputers an estimated 10 septillion years, vastly exceeding the age of the universe, showcasing a remarkable leap in processing speed. This advancement moves quantum computing closer to practical and commercially relevant applications.
Willow is a 105 qubit superconducting chip that has demonstrated a new level of error correction. The chip incorporates a fault-tolerant architecture and uses surface codes and improved qubit connectivity to mitigate noise and enhance coherence times. With this milestone, Google has also demonstrated that the more qubits it uses in Willow, the more they reduce errors. This achievement, known as being "below threshold", is a major milestone in quantum error correction that the field has pursued for almost 30 years, opening up the prospect of real time error correction on superconducting quantum systems. References :
Classification:
@manlius.substack.com - 68d
This year's Nobel Prize in Physics has been awarded to John Hopfield of Princeton University and Geoffrey Hinton of the University of Toronto. The Royal Swedish Academy of Sciences recognized their "foundational discoveries and inventions that enable machine learning with artificial neural networks." Hopfield's research centered on associative memory using Hopfield networks, while Hinton's contributions focused on methods for autonomously identifying patterns within data, utilizing Boltzmann machines. Their work is considered groundbreaking in the field of artificial intelligence and has implications for various areas of physics, including the creation of novel materials.
The award has sparked debate within the physics community, with some questioning the appropriateness of awarding a Physics Nobel for work primarily in computer science. While Hopfield's background is in condensed matter physics and his work draws inspiration from concepts like spin glass theory, Hinton's background is in artificial intelligence. The choice reflects the increasing interconnectedness and influence of computer science on other scientific fields, pushing the boundaries of traditional disciplinary lines. Despite the controversy, the Nobel committee has underscored the fundamental contributions of Hopfield and Hinton. Their innovative work on artificial neural networks, drawing upon and extending principles of statistical physics, has revolutionized machine learning, creating significant advancements with far-reaching applications beyond the realm of physics. The prize is a testament to the groundbreaking nature of their research and its transformative impact on multiple scientific and technological areas. References :
Classification:
@thequantuminsider.com - 40d
Recent breakthroughs in quantum research are showing rapid advancements, particularly in quantum teleportation and material simulation. Researchers have successfully demonstrated quantum teleportation through existing fiber optic networks, marking a significant leap from theoretical concepts to practical application. This allows information to be transferred instantly and securely by using quantum entanglement between particles without any physical movement of those particles. This achievement has been considered as a breakthrough and has been considered impossible prior to these findings.
The field of material simulation also shows huge improvements with a new quantum computing method that reduces computational resource requirements. This approach uses “pseudopotentials” to simplify interactions within atomic cores of materials, making simulations more practical and efficient. Quantum simulations were applied to study catalytic reactions, identifying over 3000 unique molecular configurations in the process. These advances demonstrate the growing importance of quantum mechanics in various areas of science, ranging from communication to material design, and also shows the potential for quantum advancements in many practical applications. References :
Classification:
|
|