@www.iansresearch.com
//
The increasing capabilities of quantum computers are posing a significant threat to current encryption methods, potentially jeopardizing the security of digital assets and the Internet of Things. Researchers at Google Quantum AI are urging software developers and encryption experts to accelerate the implementation of next-generation cryptography, anticipating that quantum computers will soon be able to break widely used encryption standards like RSA. This urgency is fueled by new estimates suggesting that breaking RSA encryption may be far easier than previously believed, with a quantum computer containing approximately 1 million qubits potentially capable of cracking it. Experts recommend that vulnerable systems should be deprecated after 2030 and disallowed after 2035.
Last week, Craig Gidney from Google Quantum AI published research that significantly lowers the estimated quantum resources needed to break RSA-2048. Where previous estimates projected that cracking RSA-2048 would require around 20 million qubits and 8 hours of computation, the new analysis reveals that it could be done in under a week using fewer than 1 million noisy qubits. This more than 95% reduction in hardware requirements is a seismic shift in the projected timeline for "Q-Day," the hypothetical moment when quantum computers can break modern encryption. RSA encryption, used in secure web browsing, email encryption, VPNs, and blockchain systems, relies on the difficulty of factoring large numbers into their prime components. Quantum computers, leveraging Shor's algorithm, can exponentially accelerate this process. Recent innovations, including Approximate Residue Arithmetic, Magic State Cultivation, Optimized Period Finding with Ekerå-Håstad Algorithms, and Yoked Surface Codes & Sparse Lookups, have collectively reduced the physical qubit requirement to under 1 million and allow the algorithm to complete in less than 7 days. References :
Classification:
|
Blogs
|