Top Mathematics discussions

NishMath - #Cryptography

@quantumcomputingreport.com //
Project Eleven, an open science initiative, has launched the QDay Prize, a global competition offering a reward of one Bitcoin, currently valued around $84,000-$85,000, to the first individual or team that can successfully break elliptic curve cryptography (ECC) using Shor’s algorithm on a quantum computer. The competition aims to assess the current progress in quantum computing and its potential to undermine existing cryptographic systems, emphasizing the transition to post-quantum cryptography. Participants are required to submit a working quantum implementation targeting ECC keys, with no classical shortcuts or hybrid methods allowed, ensuring a pure quantum solution.

The challenge involves breaking the largest ECC key possible using Shor’s algorithm on a quantum computer, focusing on a gate-level implementation of Shor’s algorithm solving the elliptic curve discrete logarithm problem (ECDLP). Project Eleven has prepared a set of ECC keys ranging from 1 to 25 bits for testing, with submissions required to include quantum program code, a written explanation of the method, and details about the hardware used. The quantum machine does not need to be publicly available, but submissions will be shared publicly to ensure transparency.

The contest, which runs until April 5, 2026, highlights the real-world cryptographic risks of advancing quantum hardware. Project Eleven believes that even achieving a few bits of a private key would be a significant breakthrough. Experts estimate that a 256-bit ECC key could be cracked with 2,000 logical qubits, potentially within a decade, underscoring the urgency of understanding how close current technologies are to threatening ECC security. The QDay Prize seeks to establish a verifiable and open marker of when practical quantum attacks against widely used encryption systems may emerge.

Recommended read:
References :
  • thequantuminsider.com: A new competition is offering a single Bitcoin to anyone who can break elliptic curve cryptography using a quantum computer — no shortcuts allowed.
  • Bitcoin News: Project Eleven believes this would be an extremely hard task, and achieving even a few bits of a private key would be big news.
  • : Project Eleven (P11) has announced the QDay Prize, an open competition offering a reward of one Bitcoin (current value about $85,000) for demonstrating the ability to break elliptic curve cryptography (ECC) using Shor’s algorithm on a quantum computer.

@medium.com //
Quantum computing is rapidly advancing, and its potential impact on encryption security is becoming a major concern. Classical encryption methods, such as RSA and Elliptic Curve Cryptography (ECC), rely on mathematical problems that are difficult for traditional computers to solve. However, quantum algorithms, particularly Shor’s algorithm, threaten to break these systems. Shor's algorithm can efficiently factor large integers, which is the foundation of RSA, and solve the elliptic curve discrete logarithm problem (ECDLP), which underpins ECC. Project Eleven has even launched the Q-Day Prize, offering 1 Bitcoin to anyone who can crack a Bitcoin private key using Shor’s algorithm on a quantum computer, underscoring the urgency of addressing this threat.

The vulnerability of current cryptographic methods has spurred research into post-quantum cryptography (PQC). PQC focuses on developing encryption algorithms that are resistant to attacks from both classical and quantum computers. The National Institute of Standards and Technology (NIST) has already published its first set of post-quantum standards in August 2024, including algorithms like ML-KEM (Kyber) for key encapsulation and ML-DSA (Dilithium) for digital signatures. These standards are intended to be integrated into software and systems over the coming years, with the NSA’s Commercial National Security Algorithm Suite (CNSA 2.0) mandating their use in certain applications by 2030.

While commercially viable quantum computers capable of breaking current encryption are still under development, the pace of progress is accelerating. IBM and Google are among the companies racing to build larger and more powerful quantum processors. Experts estimate that a quantum computer with around 20 million physical qubits (approximately 6,000 logical qubits) could factor a 2048-bit RSA modulus in a matter of hours. This has led to a "harvest-now, decrypt-later" strategy, where adversaries collect encrypted data with the intention of decrypting it once quantum computers become powerful enough. The transition to quantum-resistant cryptography is now considered an engineering problem, requiring careful planning and implementation across various systems and infrastructures.

Recommended read:
References :
  • IACR News: The Role of Quantum Computing in Enhancing Encryption Security: A Review
  • thequantuminsider.com: Quantum Contest Offers 1 Bitcoin for Cracking Encryption With Shor’s Algorithm

@thequantuminsider.com //
References: medium.com , mrtecht.medium.com ,
The rise of quantum computing is creating a new era of strategic competition, with nations and organizations racing to prepare for the potential disruption to modern encryption. Quantum computers, leveraging qubits that can exist in multiple states simultaneously, have the potential to break current encryption standards, revolutionize fields like medicine and finance, and reshape global power dynamics. Governments and businesses are acutely aware of this threat, with the U.S. scrambling to implement quantum-resistant cryptography and China investing heavily in quantum networks. This competition extends to technology controls, with the U.S. restricting China's access to quantum technology, mirroring actions taken with advanced semiconductors.

The urgency stems from the fact that a cryptanalytically relevant quantum computer capable of breaking common public key schemes like RSA or ECC is anticipated by 2030. To address this, the National Institute of Standards and Technology (NIST) has standardized quantum-secure algorithms and set a 2030 deadline for their implementation, alongside the depreciation of current cryptographic methods. Companies like Utimaco are launching post-quantum cryptography (PQC) application packages such as Quantum Protect for its u.trust General Purpose HSM Se-Series, enabling secure migration ahead of the quantum threat. This package supports NIST-standardized PQC algorithms like ML-KEM and ML-DSA, as well as stateful hash-based signatures LMS and XMSS.

Efforts are also underway to secure blockchain technology against quantum attacks. Blockchains rely on cryptography techniques like public-key cryptography and hashing to keep transactions secure, however, quantum computers could potentially weaken these protections. Post-quantum cryptography focuses on developing encryption methods resistant to quantum attacks. Key approaches include Lattice-Based Cryptography, which uses complex mathematical structures that quantum computers would struggle to solve. The transition to a quantum-resistant future presents challenges, including the need for crypto-agility and the development of secure migration strategies.

Recommended read:
References :
  • medium.com: Approaching post-quantum cryptography: an overview of the most well-known algorithms
  • mrtecht.medium.com: The Quantum Threat to Your Encryption is Coming: Understanding Post-Quantum Cryptography
  • The Quantum Insider: Utimaco Launches Post Quantum Security App Package

Mike Watts@computational-intelligence.blogspot.com //
Recent developments highlight advancements in quantum computing, artificial intelligence, and cryptography. Classiq Technologies, in collaboration with Sumitomo Corporation and Mizuho-DL Financial Technology, achieved up to 95% compression of quantum circuits for Monte Carlo simulations used in financial risk analysis. This project explored the use of Classiq’s technology to generate more efficient quantum circuits for a novel quantum Monte Carlo simulation algorithm incorporating pseudo-random numbers proposed by Mizuho-DL FT, evaluating the feasibility of implementing quantum algorithms in financial applications.

Oxford researchers demonstrated a fast, 99.8% fidelity two-qubit gate using a simplified circuit design, achieving this using a modified coaxmon circuit architecture. Also, a collaborative team from JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory, and the University of Texas at Austin demonstrated a certified randomness protocol using a 56-qubit Quantinuum System Model H2 trapped-ion quantum computer. This is a major milestone for real-world quantum applications, with the certified randomness validated using over 1.1 exaflops of classical computing power, confirming the quantum system’s ability to generate entropy beyond classical reach.

The 2025 IEEE International Conference on Quantum Artificial Intelligence will be held in Naples, Italy, from November 2-5, 2025, with a paper submission deadline of May 15, 2025. Vanderbilt University will host a series of workshops devoted to Groups in Geometry, Analysis and Logic starting May 28, 2025.

Recommended read:
References :

@The Cryptography Caffe? ? //
The UK's National Cyber Security Centre (NCSC) has released a roadmap for transitioning to post-quantum cryptography (PQC), establishing key dates for organizations to assess risks, define strategies, and fully transition by 2035. This initiative aims to mitigate the future threat of quantum computers, which could potentially break today's widely used encryption methods. The NCSC’s guidance recognizes that PQC migration is a complex and lengthy process requiring significant planning and investment.

By 2028, organizations are expected to complete a discovery phase, identifying systems and services reliant on cryptography that need upgrades, and draft a migration plan. High-priority migration activities should be completed by 2031, with infrastructure prepared for a full transition. The NCSC emphasizes that these steps are essential for addressing quantum threats and improving overall cyber resilience. Ali El Kaafarani, CEO of PQShield, noted that these timelines give clear instructions to protect the UK’s digital future.

Researchers have also introduced ZKPyTorch, a compiler that integrates ML frameworks with ZKP engines to simplify the development of zero-knowledge machine learning (ZKML). ZKPyTorch automates the translation of ML operations into optimized ZKP circuits and improves proof generation efficiency. Through case studies, ZKPyTorch successfully converted VGG-16 and Llama-3 models into ZKP-compatible circuits.

Recommended read:
References :
  • The Quantum Insider: UK Sets Timeline, Road Map for Post-Quantum Cryptography Migration
  • The Register - Security: The post-quantum cryptography apocalypse will be televised in 10 years, says UK's NCSC
  • Dhole Moments: Post-Quantum Cryptography Is About The Keys You Don’t Play
  • IACR News: ePrint Report: An Optimized Instantiation of Post-Quantum MQTT protocol on 8-bit AVR Sensor Nodes YoungBeom Kim, Seog Chung Seo Since the selection of the National Institute of Standards and Technology (NIST) Post-Quantum Cryptography (PQC) standardization algorithms, research on integrating PQC into security protocols such as TLS/SSL, IPSec, and DNSSEC has been actively pursued. However, PQC migration for Internet of Things (IoT) communication protocols remains largely unexplored. Embedded devices in IoT environments have limited computational power and memory, making it crucial to optimize PQC algorithms for efficient computation and minimal memory usage when deploying them on low-spec IoT devices. In this paper, we introduce KEM-MQTT, a lightweight and efficient Key Encapsulation Mechanism (KEM) for the Message Queuing Telemetry Transport (MQTT) protocol, widely used in IoT environments. Our approach applies the NIST KEM algorithm Crystals-Kyber (Kyber) while leveraging MQTT’s characteristics and sensor node constraints. To enhance efficiency, we address certificate verification issues and adopt KEMTLS to eliminate the need for Post-Quantum Digital Signatures Algorithm (PQC-DSA) in mutual authentication. As a result, KEM-MQTT retains its lightweight properties while maintaining the security guarantees of TLS 1.3. We identify inefficiencies in existing Kyber implementations on 8-bit AVR microcontrollers (MCUs), which are highly resource-constrained. To address this, we propose novel implementation techniques that optimize Kyber for AVR, focusing on high-speed execution, reduced memory consumption, and secure implementation, including Signed LookUp-Table (LUT) Reduction. Our optimized Kyber achieves performance gains of 81%,75%, and 85% in the KeyGen, Encaps, and DeCaps processes, respectively, compared to the reference implementation. With approximately 3 KB of stack usage, our Kyber implementation surpasses all state-of-the-art Elliptic Curve Diffie-Hellman (ECDH) implementations. Finally, in KEM-MQTT using Kyber-512, an 8-bit AVR device completes the handshake preparation process in 4.32 seconds, excluding the physical transmission and reception times.
  • The Quantum Insider: ETSI Launches New Security Standard for Quantum-Safe Hybrid Key Exchanges
  • billatnapier.medium.com: Xmas Coming Early: OpenSSL Finally Enters a Quantum World

Harry Goldstein@IEEE Spectrum //
The quantum computing field is experiencing a surge in activity, with several significant developments reported recently. VTT Technical Research Centre of Finland and IQM Quantum Computers have unveiled Europe's first 50-qubit superconducting quantum computer, accessible to researchers and companies through the VTT QX quantum computing service. This milestone strengthens Finland's position as a global leader in quantum computing, following a phased development plan that began with a 5-qubit system in 2021.

Chinese researchers have also made headlines with their Zuchongzhi 3.0, a 105-qubit superconducting quantum processor. They claim it completed a computational task in seconds that would take the world’s most powerful supercomputer an estimated 6.4 billion years to replicate. While the task was a benchmark designed to favor quantum processors, it still reinforces the potential for quantum computational advantage. Also, Mitsubishi Electric and partners are collaborating to develop scalable quantum information processing by connecting multiple quantum devices in practical environments, addressing limitations in single quantum computers.

Recommended read:
References :
  • The Quantum Insider: VTT Technical Research Centre of Finland and IQM Quantum Computers, one of the global leaders in superconducting quantum computers, have completed and launched Europe’s first 50-qubit superconducting quantum computer, now open to researchers and companies through the VTT QX quantum computing service.
  • The Quantum Insider: Mitsubishi Electric, Quantinuum K.K., and Partners Pursue Multi-Device Connectivity Research for Scalable Quantum Computing
  • The Quantum Insider: AIST, ORCA Computing Sign MoU to Strengthen Collaboration For The Industrialization of Scalable Photonic Quantum Computing

@medium.com //
References: medium.com
Recent advancements in cryptography are focusing on post-quantum solutions due to the increasing threat posed by quantum computing to current encryption methods. The PQC4eMRTD project, a significant European initiative, officially commenced on February 28th, 2025, aiming to develop and standardize quantum-resistant cryptographic protocols for electronic machine-readable travel documents (eMRTDs). Funded by the European Union under the Digital Europe Programme, the project addresses the vulnerability of eMRTDs like electronic passports to quantum threats and seeks to provide a blueprint for Europe's transition to quantum-resistant infrastructure.

Key players like Thales, Infineon Technologies, and CryptoNext Security are collaborating on this two-year project, coordinated by Infineon Technologies AG. The initiative encourages collaboration across industries, policymakers, and researchers to accelerate the adoption of Post-Quantum Cryptography (PQC) protocols, ensuring the long-term security of digital identities and electronic travel documents. Furthermore, advancements in post-quantum key encapsulation mechanisms, such as ML-KEM, are being adopted, with Go 1.24 already implementing ML-KEM, highlighting the move towards quantum-resistant cryptographic systems.

Recommended read:
References :
  • medium.com: Post-Quantum Key Encapsulation —ML-KEM Performance Benchmark Between Go Library and Cloudflare…

@Talkback Resources //
Google Cloud has launched quantum-safe digital signatures within its Cloud Key Management Service (Cloud KMS), now available in preview. This cybersecurity enhancement prepares users against future quantum threats by aligning with the National Institute of Standards and Technology’s (NIST) post-quantum cryptography (PQC) standards. The upgrade provides developers with the necessary tools to protect encryption.

Google's implementation integrates NIST-standardized algorithms FIPS 204 and FIPS 205, enabling signing and validation processes resilient to attacks from quantum computers. By incorporating these protocols into Cloud KMS, Google enables enterprises to future-proof authentication workflows, which is particularly important for systems requiring long-term security, such as critical infrastructure firmware or software update chains. This allows organizations to manage quantum-safe keys alongside classical ones, facilitating a phased migration.

Recommended read:
References :
  • gbhackers.com: Google Introduces Quantum-Safe Digital Signatures in Cloud KMS
  • BleepingComputer: Google Cloud has introduced quantum-safe digital signatures to its Cloud Key Management Service (Cloud KMS), making them available in preview.
  • Talkback Resources: Google Cloud KMS Adds Quantum-Safe Digital Signatures to Defend Against Future Threats [cloud] [crypto]
  • gbhackers.com: Google Cloud has unveiled a critical cybersecurity upgrade: quantum-safe digital signatures via its Key Management Service (Cloud KMS), now available in preview.
  • www.bleepingcomputer.com: BleepingComputer reports on Quantum-Safe Digital Signatures.
  • The Quantum Insider: Google Expands Post-Quantum Cryptography Support with Quantum-Safe Digital Signatures

@ncatlab.org //
References: nLab
Microsoft has announced a significant breakthrough in quantum computing with its new Majorana 1 chip. This groundbreaking processor is built upon a novel "Topological Core" architecture and boasts a theoretical capacity of up to one million qubits. The chip leverages a new material called topoconductor, the world’s first topological conductor, which harnesses topological superconductivity to control Majorana particles. This innovative approach promises more stable and reliable qubits, the fundamental building blocks of quantum computers. Microsoft also claims the chip could potentially break down microplastics into harmless byproducts or create self-healing materials for applications in construction, manufacturing, and healthcare.

Microsoft's Majorana 1 chip represents a paradigm shift in quantum computing technology, a development with far-reaching implications for industries and cybersecurity. By using topological qubits, Majorana 1 is designed to be inherently more stable and less prone to errors than current qubit technologies. While Microsoft touts this development as progress and hopes quantum computing will be used to benefit humanity, some experts warn of its potential use as a new tool that could break existing encryption methods. Despite these potential risks, Microsoft is dedicated to developing a scalable quantum computing prototype which solidifies their role at the forefront of quantum innovation.

Recommended read:
References :
  • nLab: quantum Fourier transform